

Logistics for Biomass

John Sessions Kevin Boston Rene Zamora-Cristales Greg Latta

Northwest Advanced Renewables Alliance

Initial Information

- Biomass estimates are critical to determine the most efficient logistical system
- There are many 'rules of thumb' for how much biomass is available for collection.
 - I.E. 70% of allometric estimates for tops and branches
 - 0.5/1.0 BDT per Mbf

Allometric Studies

- Bureau of Business and Economic Research
 - Developed a ratio estimator that can estimate biomass using various utilization standards from FIA data

Allometric Studies

- University of Montana Bureau of Business and Economic Research: Logging Utilization Research
 - Logging residues are estimated by sampling recently felled trees in active logging sites before trees are yarded to a landing.
 - The ratio of growing-stock residue volume/mill delivered volume can be applied to planned timber harvest volumes to predict residue production at the stand, landscape, or state-level.
 - For example the residue ratio = 29 cubic feet of growing-stock residue generated per 1,000 cubic feet of mill-delivered volume for the 4-state NARA project area (2008-2013 data).
 - Bole, branch, and foliar biomass (i.e., non-growing stock portions of logging) residues can then be estimated with allometric equations.

Stand Level Approach

- Total growing-stock residue volume is predicted, but where that volume ends up- in the forest or in the residue pile, is unknown.
- BBER staff and Boston are working together to produce models that will enable land managers to predict the fraction of the total residue available in piles as a function of logging systems employed and other readily available variables.

Direct Measurements

- Geometric method found to be to inconsistent from person to person
- LiDAR difficulty to process expensive
- Laser-range finder compared well with LiDAR estimates

The different methods

Comparison of methods

Laser Range-finder 140

Long and Boston, 2014. An Evaluation of Alternative Measurement Techniques for Estimating the Volume of Logging Residue. Forest Science. Vol 60:200-204

Total Available by System

	Unit	Residual	Transect	Total Biomass	Percent
	Area (Ac)	Volume	Std. (Cy/Ac)	(Cy)	In Piles
		(Cy/Ac)			
Mixed					
Fernhopper – WV	40.6	38	4.4	3,254	53.6%
Shovel					
Numskull - WV	70.2	42	4.8	6,883	59.4%
High Deck -CAS	9.8	21	17.6	796	75.0%
System Average					67.2%
Cable					
Shot Pouch - CAS	66.7	51	19.7	5,751	42.7%
Four Way – OC	60.7	45	12.8	4,630	41.9%
Euchre - OC	33.0	25	2,8	1,772	54.8%
System					46.5%
ANIFA OSII				N	Λ D Λ

Ground vs Cable – location and size

Distance from road

Factors affecting the economics

- Distance from the grinder/chipper landing not distance from the road
- Different technologies for collection: Shovel only, Forwarder only, shovel-forwarder, bin trucks etc.
- Access to chip vans: turn-arounds and turn-outs
- Path from the pile to the landing is not a straight line always: Terrain conditions matters ---> Slope matters for ground-based equipment
- Processing equipment and equipment interactions
- Transportation distance in forest and in highway:
 Time matters more than distance

Step 1: Field work on existing operations

- Measure of pile locations
- Measure of volume at each pile
- Location of potential grinding landings with access for chip-vans (turn-around available)

Step 2: Mapping and Spatial information, slope

10 meter DEM, with slope

Step 3: Least cost path to landing as a function of distance and Network Analyst extension

Collection Costs

System 1: 1-Loader only

System 2: 1-Forwarder & Self-Loading

System 3: 1-Forwarder & 1-Loader

System 4: 2-Forwarders & 1-Loader

System 5: 2-Forwarders & 1-Loader & 1-Operator

 Marginal cost (\$/BDT) to bring forest residues to landing as a function of collection method and distance to landing. Mobilization costs are not considered (from Zamora and Sessions 2015).

Current work

 Determining the amount available for various costs.

Collection vs Transport

Tradeoffs between collection and transport (Berry 2015)

% Area by Harvest System and Distance from Road (NARA region composite)

(+)			<u> </u>				
	REGION	# PLOTS	%AVAIL	G1 -150'	G2- 300'	G3 300+	%C
	OR	1973	87.24%	11.14%	11.14%	43.88%	33.83%
	WA	2093	87.61%	12.16%	12.16%	47.76%	27.92%
	ID	675	89.83%	9.02%	9.02%	43.29%	38.67%
	MT	1419	92.27%	2.86%	2.86%	66.29%	28.00%
							L

WHERE

G1= GROUND-BASED SYSTEMS % LAND AREA 0-150' ROAD OFFSET

G2= GROUND-BASED SYSTEMS % LAND AREA 150-300' ROAD OFFSET

G3= GROUND-BASED SYSTEMS % LAND AREA > 300' + OFFSET

C= CABLE-BASED SYSTEMS % LAND AREA

% AVAIL = LAND AREA THAT HAS NOT BEEN RECENTLY HARVESTED

State and Private FIA Plot Assessment (from Berry 2015)

Basic Biomass Supply Model

Biomass Model Assumptions

Cable	Cable	Ground	Ground	Ground	Ground
In unit	At landing	At landing	< 150'	150 – 300'	300′ +
from Bostonfrom Bostonfrom B46.5%46.5%67.2from Berryfrom Berryfrom BPlot specificPlot specificPlot from Sfrom Sessionsfrom Sfrom S		Availability from Boston 67.2% from Berry Plot specific from Sessions 25% at landing	Availability from Boston 67.2% from Berry Plot specific from Sessions 75% in field	from Boston from 67.2% 67 from Berry from ecific Plot specific Plot from Sessions from	
Costs					
from Sessions Collect 0.00					
Collect 0.00 Grind 21.00		Costs			
	Costs from Sessions	from Sessions Collect 0.00	Costs		
Wait 3. 5 0			from Sessions	Costs from Sessions	
vuit 3.50	Grind 21.00		0 11 . 44 50		Costs
	SwingBin 0.00		Grind 21.00		from Sessions Collect 23.50
	Wait 3.50		Wait 3.50	Wait 3.50	
					Wait 3.50

Older Assumptions for all ground:

Collect 20.0 Grind 17.5

Biomass Supply Curve

Disaggregated Biomass Supply Curve

Supply at \$65/bdt for Longview

Old 975,521 bdt/yr

New 944,001 bdt/yr

Scale

• 3500 - 4000

Bdt/year

4000 - 4500

· 0 - 250

4500 - 5000

250 - 500

• 5000 - 5500

500 - 750

5500 - 6000

• 750 - 1000

6000 - 6500

1000 - 1500

• 6500 - 7000

1500 - 2000

7000 - 8000

2000 - 2500

8000 - 9000

2500 - 3000

• 9000 - 10000

3000 - 3500

10000 +

